Interfacial Recognition of Acetylcholine by an Amphiphilic p-Sulfonatocalix[8]arene Derivative Incorporated into Dimyristoyl Phosphatidylcholine Vesicles
نویسندگان
چکیده
Dodecyl ether derivatives 1-3 of p-sulfonatocalix[n]arene were incorporated into dimyristoyl phosphatidylcholine (DMPC) vesicles, and their binding abilities for acetylcholine (ACh) were examined by using steady-state fluorescence/fluorescence anisotropy and fluorescence correlation spectroscopy (FCS). For the detection of ACh binding to the DMPC vesicles containing 5 mol % of 1-3, competitive fluorophore displacement experiments were performed, where rhodamine 6G (Rh6G) was used as a fluorescent guest. The addition of Rh6G to the DMPC vesicles containing 3 resulted in a decrease in the fluorescence intensity of Rh6G with an increase of its fluorescence anisotropy, indicating that Rh6G binds to the DMPC-3 vesicles. In the case of DMPC-1 and DMPC-2 vesicles, significant changes in the fluorescence spectra of Rh6G were not observed. When ACh was added to the DMPC-3 vesicles in the presence of Rh6G ([3]/[Rh6G]=100), the fluorescence intensity of Rh6G increased with a decrease in its fluorescence anisotropy. From the analysis of fluorescence titration data, the association constants were determined to be 7.1×10⁵ M-1 for Rh6G-3 complex and 1.1×10² M-1 for ACh-3 complex at the DMPC-3 vesicles. To get a direct evidence for the binding of Rh6G and its displacement by ACh at the DMPC-3 vesicles, diffusion times of the Rh6G were measured by using FCS. Binding selectivity of the DMPC-3 vesicles for ACh, choline, GABA, L-aspartic acid, L-glutamic acid, L-arginine, L-lysine, L-histamine and ammonium chloride was also evaluated using FCS.
منابع مشابه
Amphiphilic p-sulfonatocalix[4]arene-coated CdSe/ZnS quantum dots for the optical detection of the neurotransmitter acetylcholine.
Water-soluble CdSe/ZnS (core-shell) semiconductor quantum dots surface-modified with tetrahexyl ether derivatives of p-sulfonatocalix[4]arene were synthesized for the optical detection of the neurotransmitter acetylcholine.
متن کاملSupramolecular polymeric vesicles formed by p-sulfonatocalix[4]arene and chitosan with multistimuli responses.
Supramolecular polymeric vesicles are constructed by the complexation of p-sulfonatocalix[4]arene and chitosan, where the multivalent electrostatic interactions between the anionic sulfonate tetramer and cationic polyammoniums served as the dominant driving force. The supra-amphiphilic assemblies are disassembled upon exposure to a pH stimulus since the partial deprotonation of chitosan accompa...
متن کاملA photochromic supramolecular polymer based on bis-p-sulfonatocalix[4]arene recognition in aqueous solution.
A photochromic supramolecular polymer based on bis-p-sulfonatocalix[4]arene recognition with a dithienylethene derivative in aqueous solution was fabricated. The resultant polymer showed good photochromic behaviour with obvious colour switching and a morphology change under alternative UV/Vis light stimuli.
متن کاملAmphiphilic p-Sulfonatocalix[4]arene as “Drug Chaperone” for Escorting Anticancer Drugs
Supramolecularly constructing multifunctional platform for drug delivery is a challenging task. In this work, we propose a novel supramolecular strategy "drug chaperone", in which macrocyclic amphiphiles directly coassemble with cationic drugs into a multifunctional platform and its surface is further decorated with targeting ligands through host-guest recognition. The coassembling and hierarch...
متن کاملSurface Recognition and Complexations Between Synthetic Poly(ribo)nucleotides and Neutral Phospholipids and Their Implications in Lipofection
Thermodynamic features related to preparation and use of self-assemblies formed between multilamellar and unilamellar zwitterionic liposomes and polynucleotides with various conformation and sizes are presented. The divalent metal cation or surfactant-induced adsorption, aggregation and adhesion between single- and double-stranded polyribonucleotides and phosphatidylcholine vesicles was followe...
متن کامل